logo
Nachricht senden
Shenzhen Olax Technology CO.,Ltd
produits
Neuigkeiten
Zu Hause >

CHINA Shenzhen Olax Technology CO.,Ltd Unternehmensnachrichten

Key Takeaways from 5G Radio Working Group (RAN2) R17

  RAN2's 5G work focuses on consolidating and enhancing the concepts and functions introduced in R16, while adding new system features; improving vertical industry applications including positioning and dedicated networks; advancing short-range (direct) communication between terminal devices in the field of autonomous driving (V2X) for Internet of Things (IoT) support; improving support for multiple media (codecs, streaming media, broadcast) related to the entertainment industry; and improving support for mission-critical communications. Furthermore, it improves several network functions (such as network slicing, flow control, and edge computing). The specific key points regarding the radio interface architecture and protocols (such as MAC, RLC, PDCP, SDAP), radio resource control protocol specifications, and radio resource management processes under the responsibility of 3GPP RAN2 are as follows:   I. Key Features of RAN2 Rel-17: Sidelink Enhancements (Relay, Multicast, V2X Functionality Extensions). RedCap Protocol Support (Lightweight RRC Status, Energy Saving, Feature Set Reduction). QoE/slice control enhancements and mobility handling (slice improvements and ATSSS interaction). Location enhancement procedures (new measurement methods and reference signal usage). II. Rel-17 Implementation Impact and Details   2.1 Sidelink Enhancements (Relay, Multicast, V2X Functionality Extensions) RRC message and MAC/PHY multiplexing changes; new Sidelink relay (L2/L3) multicast and group management procedures. In application: Extended sidelink control channel processing and HARQ management for relay nodes, RC upgrade to support Sidelink configuration lists, group identifiers, and security context distribution. Resource allocation enhancements support scheduling and autonomous resource selection and add an RRC TLV field for authorization timing and reservation windows. 2.2 RedCap and RRC Reduced RRC complexity: RedCap devices may support fewer RRC states and optional functions (e.g., limited measurements). RAN2 specifies capability signaling and fewer RRC IEs; implementers must ensure that the gNodeB's RRC can handle capability-limited UEs without affecting normal UE processing. Energy-saving timers and RRC inactive: Tight integration with MAC and DRX to optimize power consumption; the scheduler supports longer DRX cycles and fewer grant allocations. 2.3 Location and Measurement Rel-17 introduces new measurement types and reporting formats to improve the application of PRS/CSI-RS in location. Implementation requires changes to UE measurement reports (RRC measurement objects and reports) and the LPP/NRPPa interface of the location server. ​

2025

12/05

5G System Architecture Supporting ATSSS

  I. ATSSS is an abbreviation for Access Traffic Steering, Switching, Splitting; this is a function introduced by 3GPP for 5G (NR) that allows mobile devices (UEs) to simultaneously use 3GPP and non-3GPP access, manage user data traffic, control new data flows, select (new) access networks, switch all ongoing data to different access networks to maintain data continuity, and split individual data flows, allocating them to multiple access networks to improve performance or achieve redundancy. Specifically:   Control:The network determines which access method (e.g., 5G and Wi-Fi) a new data flow should use based on operator-defined rules and real-time conditions. Switching:The network transfers an ongoing data session from one access network to another. For example, a video call can be switched from Wi-Fi to 5G without interruption. Splitting:The network can simultaneously allocate a single data flow to two or more access networks. This can be used to increase bandwidth (link aggregation) or ensure reliability (redundancy). II. Working Principle ATSSS can operate at the IP layer (using protocols such as MPTCP) or below the IP layer (using underlying routing functions). Control is handled by the 5G core network's PCF (Policy Control Function), based on operator-defined rules and performance measurement data from the User Equipment (UE) and the network itself.   III. ATSSS Modes The main ATSSS modes are as follows: Primary/Backup Mode:Traffic is sent through the active link. If the active link fails, it switches to the backup link. Load Balancing Mode:Traffic is distributed among available access networks, typically based on a percentage to balance the load. Minimum Latency Mode:Traffic is routed to the access network with the lowest latency (round-trip time). Priority Mode:Traffic is initially sent through a high-priority link. If that link becomes congested, traffic is split or diverted to a lower-priority link. IV. Architecture Expansion and Functionality The 5G system architecture has been expanded to support ATSSS functionality (see Figures 4.2.10-1, 4.2.10-2, and 4.2.10-3); the 5G terminal (UE) supports one or more flow control functions, namely MPTCP, MPQUIC, and ATSSS-LL. Each flow control function in the UE can perform flow control, handover, and splitting between 3GPP and non-3GPP access networks according to the ATSSS rules provided by the network. For Ethernet-type MA PDU sessions, the UE must have ATSSS-LL functionality, with the following specific requirements for the UPF: - The UPF can support MPTCP proxy functionality, which communicates with the MPTCP function in the UE using the MPTCP protocol (IETF RFC 8684 [81]). - UPF can support MPQUIC proxy functionality, which communicates with the MPQUIC function in the UE using the QUIC protocol (RFC9000 [166], RFC9001 [167], RFC9002 [168]) and its multipath extension (draft-ietf-quic-multipath [174]). - UPF can support ATSSS-LL functionality, which is similar to the ATSSS-LL functionality defined for the UE. IV. ATSSS Application Characteristics 4.1 Ethernet type MA PDU sessions require the ATSSS-LL functionality (conversion) in 5GC. In addition: - UPF supports Performance Measurement Function (PMF), which the UE can use to obtain access performance measurements on the 3GPP access user plane and/or non-3GPP access user plane. - AMF, SMF, and PCF extend new functionality, which is discussed further in Section 5.32. 4.2 ATSSS control may require interaction between the UE and the PCF (as specified in TS 23.503[45]).   4.3 The UPF shown in Figure 4.2.10-1 can be connected via the N9 reference point instead of the N3 reference point.   V. Roaming Scenarios 5.1 Figure 4.2.10-2 shows ATSSS support in a roaming scenario for the 5G system architecture; this scenario includes home-roaming traffic, and the UE is registered to the same VPLMN via 3GPP and non-3GPP access. In this case, the MPTCP proxy function, MPQUIC proxy function, ATSSS-LL function, and PMF are located in the H-UPF. 5.2 Figure 4.2.10-3 shows ATSSS support in a roaming scenario for the 5G system architecture, this scenario includes home-roaming traffic, and the UE is registered to the VPLMN via 3GPP access and to the HPLMN via non-3GPP access (i.e., the UE is registered to different PLMNs). In this case, the MPTCP proxy function, MPQUIC proxy function, ATSSS-LL function, and PMF are all located in H-UPF.

2025

12/04

What's different about 5G (NR) in Release 16 (2)?

  Besides defining SA (Standalone) as the standard 5G configuration, Release 16 5G enhances many features to support numerous improvements to the air interface, including unlicensed spectrum in the millimeter wave (mmW) band, and support for Industrial Internet of Things (IIoT) and Ultra-Reliable Low-Latency Communication (URLLC), making it more powerful. Specific additions are as follows:   I. Feature Enhancements As 5G network deployment progresses, the capacity requirements of the Radio Access Network (RAN) continue to grow, and the flexibility of network deployment is also increasing, including support for dedicated networks; RAN capacity and performance have become key to solving problems;   1.1 Capacity Enhancements include:   MIMO (Multiple-Input Multiple-Output) Improvements: Enhanced CSI II codebook to support MU-MIMO, multiple transmissions and receptions (multiple TRPs/panel transmissions), multi-beam operation in the millimeter wave band FR2, and low peak-to-average power ratio (PAPR) reference signals. Unlicensed Spectrum Applications: Similar to Licensed Assisted Access (LAA) and Enhanced LAA, 3GPP Release 16 supports unlicensed spectrum for NR access to improve the throughput and capacity of Wi-Fi in the 5-6 GHz band. 1.2 Performance Improvements:   RACS (Radio Access Capability Signaling) Optimization: Establishing RACS IDs and mapping them to device radio capabilities optimizes signaling for UE radio capabilities. Multiple UEs can share the same RACS ID, which is stored in the Next Generation Radio Access Network (NG-RAN) and Access and Mobility Management Function (AMF). Additionally, a new network function called UCMF (UE Capability Management Function) is introduced. TDD Applications: NR is primarily used in high-frequency time-division duplex bands: Due to electromagnetic wave reflection and refraction, the downlink of one cell can interfere with the uplink of another cell; this cross-link interference is inherent. NR Release 16 supports remote interference management to mitigate this cross-link interference. II. Flexible Network Deployment R16's IAB (Integrated Access and Backhaul) functionality can increase network capacity by rapidly deploying denser access points. Additionally: Non-Public Networks (NPNs): R16 supports two types of NPNs: Standalone NPN (SNPN) and Public Network Integrated NPN (PNI-NPN).  Flexible SMF and UPF Deployment: R16 introduces management flexibility for Session Management Functions (SMFs) and User Plane Functions (UPFs), allowing multiple SMFs to control a single UPF, and the UPF can assign IP addresses in place of the SMF. Enhanced Network Slicing Capabilities: R16 adds Network Slice-Specific Authentication and Authorization (NSSAA) to support individual authentication and authorization for services within a given network slice. Enhanced eSBA (Service-Based Architecture): R16 enhances service discovery and routing capabilities, including the introduction of a new Service Communication Broker (SCP) network function. R16 also enhances Network Automation Architecture (eNA). Release 15 supports data collection and network analytics public functionality. In Release 16, network analytics IDs can be used to assign specific analytics data, such as network usage per network slice, UE mobility information, and network performance, enabling the Network Data Analytics Function (NWDAF) to collect specific data associated with that analytics ID.

2025

12/03

What's different about 5G (NR) in Release 16 (1)?

  3GPP introduced LTE in Release 8 and LTE-Advanced in Release 10. As the first version of the 5G specification, Release 15 defined the 5G (NR) air interface and the 5G radio access network and core network. Release 16 (R16) introduced standalone (SA) and non-standalone (NSA) deployments, allowing operators to take advantage of the additional benefits of 5G.   I. Evolution from 4G to 5G In Release 16 (R16), 3GPP enhanced 5G capabilities to support several improvements to the NR air interface, including unlicensed spectrum in the millimeter-wave (mmW) band and improved support for Industrial Internet of Things (IIoT) and Ultra-Reliable Low-Latency Communication (URLLC). The network also underwent several enhancements to improve deployment flexibility and performance.   II. R16 Support for 5G Applications 5G was developed to meet the diverse application scenarios of wirelessly connected devices, covering enhanced mobile broadband (eMBB), massive Internet of Things (mIoT), and ultra-reliable low-latency communication (URLLC). Release R15 primarily focused on eMBB, with limited support for other application scenarios. Release R16 enhances URLLC and IoT capabilities and adds support for 5G vehicle-to-everything (V2X) communication.   III. Key 5G Application Scenarios include:   1. Ultra-reliable low-latency communication New enhancements provide low-latency communication to support industrial automation, connected cars, and telemedicine applications; specifically: The Time-Sensitive Networking (TSN) architecture supports redundant transmissions, thus supporting URLLC applications. Furthermore, the TSN service provides time synchronization for packet transmissions through integration with external networks. R16 enhances the uplink synchronization (RACH) process by supporting low latency and reducing signaling overhead, enabling two-step RACH compared to the previous four-step approach. New mobility enhancements reduce downtime and improve reliability during 5G connected device handover. 2. Internet of Things (IoT): 5G-supported Industrial Internet of Things (IIoT) capabilities can meet the service needs of industries such as manufacturing, logistics, oil and gas, transportation, energy, mining, and aviation.   Cellular Internet of Things (CIoT), now available in 5G, offers similar functionality to that provided in LTE (LTE-M and NB-IoT), allowing IoT traffic to be carried in network signaling. Energy-saving features such as enhanced discontinuous reception (DRX), relaxed radio resource management for idle devices, and enhanced scheduling can extend the battery life of IoT devices. 3. Vehicle-to-Everything (V2X): Release 16 goes beyond the V2X service capabilities supported by LTE in Release 14, leveraging 5G (NR) access to enhance V2X in several ways, such as enhanced autonomous driving, accelerated network effects, and energy-saving features.

2025

12/02

Linkanpassung (LA) in 5G (NR)-Netzwerken (Fortsetzung)

  In 5G (NR) drahtlosen Netzwerken können mobile Endgeräte (UEs) zwei Arten der Linkanpassung verwenden: Inner-Loop-Link-Anpassung und Outer-Loop-Link-Anpassung. Ihre Eigenschaften sind wie folgt: ILLA – Inner-Loop-Link-Anpassung; OLLA – Outer-Loop-Link-Anpassung. I. ILLA (Inner-Loop Link Adaptive) führt schnelle und direkte Anpassungen basierend auf dem vom jeweiligen UE gemeldeten Channel Quality Indicator (CQI) durch. Das UE misst die Downlink-Qualität (z. B. unter Verwendung von CSI-RS). Es meldet den CQI an den gNB, der den CQI (über eine statische Nachschlagetabelle) dem MCS-Index für die nächste Übertragung zuordnet. Diese Zuordnung spiegelt die Schätzungen der Linkbedingungen für diesen Zeitschlitz/TTI wider. ILLA wendet einen Dreistufen-Prozess wie folgt an:   Das UE misst den CSI-RS und meldet CQI=11. Der gNB ordnet CQI=11 MCS=20 zu. Der MCS wird verwendet, um den Transportblock für den nächsten Zeitschlitz zu berechnen.   Der Vorteil von ILLA liegt in seiner Fähigkeit, sich sehr schnell an Kanaländerungen anzupassen; es hat jedoch Einschränkungen in Bezug auf Falscherkennungen, CQI-Fehler und Rauschen. Insbesondere kann sich der BLER-Zielwert verschieben, wenn der Kanal nicht ideal ist oder das Feedback unvollkommen ist.   II. OLLA (Outer Loop Link Adaptive) verwendet einen Feedback-Mechanismus, um den MCS-Zielwert fein abzustimmen, um die tatsächliche Link-Performance zu kompensieren, die durch HARQ-ACK/NACK-Antworten beobachtet wird. Für jede Übertragung empfängt der gNB entweder ein ACK (Erfolg) oder ein NACK (Fehler); wobei: Wenn der BLER höher ist als der festgelegte Zielwert (z. B. 10 %), passt OLLA durch einen Korrekturoffset (Δoffset) nach unten an, d. h. es reduziert die Aggressivität des MCS. Wenn der BLER niedriger ist als der Zielwert, wird der Offset nach oben angepasst, d. h. die Aggressivität des MCS erhöht. Der Offset wird der SINR→CQI-Zuordnung in ILLA hinzugefügt, wodurch sichergestellt wird, dass der BLER schließlich auf den Zielwert konvergiert—auch wenn das Eingangssignal nicht ideal ist.   Der Vorteil von OLLA liegt in seiner Fähigkeit, einen robusten und stabilen BLER aufrechtzuerhalten und sich an langsam ändernde Systemfehler im SINR/CQI-Bericht anzupassen. Aufgrund seiner langsameren Reaktionsgeschwindigkeit erfordert die optimale Einstellung der Schrittweite (d. h. Δup und Δdown) einen Kompromiss zwischen Stabilität und Reaktionsgeschwindigkeit. Im OLLA-Mechanismus wird Feedback verwendet, um das MCS-Ziel fein abzustimmen, um die tatsächliche Link-Performance zu kompensieren, die durch HARQ-ACK/NACK-Antworten beobachtet wird.   III. Vergleich von 4G- und 5G-Linkanpassung Die folgende Tabelle vergleicht die 4G- und 5G-Linkanpassung.   Merkmal 5G NR 4G LTE CSI CQI + PMI + RI + CRI Hauptsächlich CQI Anpassungsgeschwindigkeit Bis zu 0,125 ms 1 ms Verkehrsarten eMBB, URLLC, mMTC hauptsächlich eMBB MCS-Zuordnung ML-optimiert, vom Anbieter gesteuert Feste Tabelle Beamforming MassiveMIMO, Beam-Auswahl Minimal Scheduler Vollständig integriert & Intelligent Grundlegendes CQI, PF                     In 5G (NR)-Netzwerken spielt Link Adaptive (LA) eine entscheidende Rolle bei der Gewährleistung einer hohen Leistung und zuverlässigen Konnektivität. Im Gegensatz zum langsameren Ansatz mit fester Tabelle von 4G (LTE) verwenden 5G-Systeme intelligentere und schnellere Technologien, einschließlich KI/ML und Echtzeit-Feedback. Dies ermöglicht es dem Netzwerk, sich in Echtzeit an sich ändernde Umgebungen anzupassen und Funkressourcen effizienter zu nutzen.

2025

11/28

Link Adaptation (LA) in 5G (NR) Networks

  I. Link Adaptation In mobile communication networks, the wireless environments of any two end users (UEs) are never exactly the same. Some users may be right next to a 5G base station with excellent wireless signal, while others may be deep inside buildings, moving at high speeds, or at the edge of a cell. However, they all expect a fast and stable network experience. To achieve the highest possible throughput and optimal reliable connection, "Link Adaptation" technology was developed. Link adaptation can be viewed as an "automatic mode" of the 5G physical layer, continuously monitoring the wireless environment and adjusting transmission parameters in real time to provide the best data rate while controlling errors.   II. Link Adaptation (AMC) in 5G In 5G networks, link adaptation refers to the process of dynamically adjusting transmission parameters (such as modulation, coding, and transmit power) to optimize the communication link between the base station (gNodeB) and the user equipment (UE). The goal of link adaptation is to maximize spectral efficiency, throughput, and reliability while adapting to constantly changing channel conditions and user needs. Figure 1. 5G Link Adaptive Process   III. Characteristics of 5G Link Adaptive Process   Modulation and Coding Scheme (MCS) Selection:Link adaptive process involves selecting a suitable modulation and coding scheme based on channel conditions, signal-to-noise ratio (SNR), and interference levels. Higher modulation schemes offer higher data rates but are more demanding on channel conditions; lower modulation schemes are more robust under adverse conditions. Transmit Power Control: Link adaptive process also includes adjusting transmit power to optimize signal quality and coverage while minimizing interference and power consumption. Transmit power control helps maintain a balance between signal strength and interference levels, especially in dense network deployments. Channel Quality Feedback: Link adaptive process relies on feedback mechanisms to provide information about channel conditions, such as Channel State Information (CSI), Received Signal Strength Index (RSSI), and Signal-to-Interference-Ratio (SINR). This feedback enables the gNodeB to make informed decisions regarding modulation, coding, and power adjustments. Adaptive Modulation and Coding (AMC): AMC is a key feature of link adaptive process; it dynamically adjusts modulation and coding parameters based on real-time channel conditions. By adapting to changes in channel quality, AMC maximizes data rates and spectral efficiency while ensuring reliable communication. Fast Link Adaptation: In rapidly changing channel environments, such as high-mobility scenarios or fading channels, fast link adaptation technology is used to quickly adjust transmission parameters to cope with channel fluctuations. This helps maintain a stable and reliable communication link under changing channel conditions.   In wireless systems, link adaptation plays a crucial role in optimizing wireless communication system performance by continuously adjusting transmission parameters to match current channel conditions and user needs. By maximizing spectral efficiency and reliability, link adaptation helps achieve high data rates, low latency, and seamless connectivity in 5G networks.

2025

11/27

5G (NR) System Network Functions and Entities

  As 5G (NR) supports increasingly more connections and functions, the number of network functions and entities in the system is also constantly increasing. 3GPP defines network functions and entities in Release 18.5 as follows:   I. Network Function (NF) Units The 5G system includes the following functional units:  AUSF (Authentication Server Function); AMF (Access and Mobility Management Function); DN (Data Network), specifically including: operator services, internet access, or third-party services; UDSF (Unstructured Data Storage Function); NEF (Network Exposure Function); NRF (Network Repository Function); NSACF (Network Slice Admission Control Function); NSSAAF (Network Slice-Specific and SNPN Authentication and Authorization Function); NSSF (Network Slice Selection Function); PCF (Policy Control Function); SMF (Session Management Function); UDM (Unified Data Management); UDR (Unified Data Repository). - UPF (User Plane Functions). UCMF (UE Radio Capability Management Functions). AF (Application Functions). UE (User Equipment). RAN (Radio Access Network). 5G-EIR (5G Device Identity Registration). NWDAF (Network Data Analysis Functions). CHF (Charging Functions). TSN AF (Time-Sensitive Network Adapter). TSCTSF (Time-Sensitive Communications and Time Synchronization Functions). DCCF (Data Collection Coordination Functions). ADRF (Analysis Data Repository Functions). MFAF (Message Frame Adapter Functions). NSWOF (Non-Seamless WLAN Offload Functions). EASDF (Edge Application Server Discovery Functions). *Functions provided by DCCF or ADRF can also be carried by NWDAF.   II. Network Entities The 5G system, supporting connectivity with non-3GPP Wi-Fi, WLAN, and wired access networks, also includes the following entity units in its architecture: SCP (Service Communication Agent). SEPP (Secure Edge Protection Agent). N3IWF (Non-3GPP Interoperability Function). TNGF (Trusted Non-3GPP Gateway Function). W-AGF (Wired Access Gateway Function). TWIF (Trusted WLAN Interoperability Function).

2025

11/26

PDU-Sitzungsanker (PSA) in 5G-Systemen

  In 5G (NR)-Systemen ist der PSA (PDU-Sitzungsanker) die UPF (User Plane Function). Er fungiert als Gateway, das über die N6-Schnittstelle der PDU-Sitzung eine Verbindung zum externen DN (Datennetzwerk) herstellt. Als Ankerpunkt für Benutzerdatensitzungen verwaltet der PSA den Datenfluss und stellt Verbindungen zu Diensten wie dem Internet her.   I. Es gibt drei PSA-Modi: SSC-Modus 1, SSC-Modus 2 und SSC-Modus 3. SSC-Modus 1: In diesem Modus behält das 5G-Netzwerk den UE-Verbindungsdienst bei. Für PDU-Sitzungen der Klasse IPv4, IPv6 oder IPv4v6 wird die IP-Adresse reserviert. In diesem Fall bleibt die User Plane Function (UPF), die als PDU-Sitzungsanker fungiert, unverändert, bis die UE die PDU-Sitzung freigibt. SSC-Modus 2: In diesem Modus kann das 5G-Netzwerk die Verbindung zur UE freigeben, d. h. die PDU-Sitzung freigeben. Wenn die PDU-Sitzung zur Übertragung von IP-Paketen verwendet wurde, wird auch die zugewiesene IP-Adresse freigegeben. Ein Anwendungsszenario für diesen Modus ist, wenn der Anker-UPF einen Lastausgleich benötigt, wodurch das Netzwerk Verbindungen freigeben kann. In diesem Fall kann die PDU-Sitzung auf einen anderen Anker-UPF übertragen werden, indem die bestehende PDU-Sitzung freigegeben und anschließend eine neue eingerichtet wird. Es verwendet ein "Trennen + Einrichten"-Framework, was bedeutet, dass die PDU-Sitzung vom ersten bedienenden UPF freigegeben und dann eine neue PDU-Sitzung auf dem neuen UPF eingerichtet wird. SSC-Modus 3: In diesem Modus behält das 5G-Netzwerk die der UE bereitgestellte Verbindung bei, aber während bestimmter Prozesse können einige Auswirkungen auftreten. Wenn sich beispielsweise der Anker-UPF ändert, wird die der UE zugewiesene IP-Adresse aktualisiert, aber der Änderungsprozess stellt sicher, dass die Verbindung aufrechterhalten wird; d. h. eine Verbindung zum neuen Anker-UPF wird hergestellt, bevor die Verbindung mit dem alten Anker-UPF freigegeben wird. 3GPP Release 15 unterstützt Modus 3 nur für IP-basierte PDU-Sitzungen. II. Die Hauptverwendungen des PDU-Sitzungsankerpunkts umfassen: Datenbeendigungspunkt: Der PSA ist die UPF, an der die PDU-Sitzung ihre Verbindung mit dem externen Datennetzwerk beendet. Datenrouting: Er leitet Benutzerdatenpakete zwischen dem User Equipment (UE) und dem externen DN weiter. IP-Adresszuweisung: Der PSA ist mit einem IP-Adresspool verbunden. Die IP-Adresse der UE wird aus diesem Pool zugewiesen, entweder vom UPF selbst oder über einen externen Server (z. B. einen DHCP-Server). Die Session Management Function (SMF) verwaltet diesen Adresspool. Datenpfadsteuerung: Die SMF steuert den Datenpfad der PDU-Sitzung, wählt den PSA aus und verwaltet die Beendigung der N6-Schnittstelle.

2025

11/25

5G-Repeater-Klassifizierung und technische Standards

  I. Eigenschaften von Repeatern In Mobilfunksystemen ist ein Repeater (Mobile Repeater), auch bekannt als Signalverstärker (Repeater) oder Mobilfunksignalverstärker, ein Gerät, das vorhandene Mobilfunksignale verstärkt, um die Signalstärke in schwachen Bereichen zu verbessern. Sein Funktionsprinzip beinhaltet die Verwendung einer externen Antenne zum Empfang schwacher Signale, deren Übertragung an einen Signalverstärker zur Verstärkung und anschließende erneute Ausstrahlung des verstärkten Signals über eine interne Antenne. Dies verbessert die Mobilfunkkonnektivität innerhalb seiner effektiven Reichweite und ist daher besonders für ländliche Gebiete, große Beton- und Metallstrukturen oder Fahrzeuge geeignet.   II. Repeater-Standards Signalverstärker in 5G (NR)-Systemen werden klassifiziert in: Repeater, NCRs (Network Control Repeater) und Zusatzausrüstung; darunter werden NCRs weiter unterteilt in NCR-Fwd und NCR-MT. Die anwendbaren Anforderungen, Verfahren, Testbedingungen, Leistungsbewertungen und Leistungsstandards für verschiedene Arten von Basisstationen in drahtlosen Netzwerken sind wie folgt:   NR-Repeater, die mit Antennenanschlüssen ausgestattet sind, die während der EMV-Prüfung abgeschlossen werden können, erfüllen die HF-Anforderungen für Typ 1-C Repeater in TS 38.106[2] und weisen die Konformität mit TS 38.115-1[3] nach. NR-Repeater ohne Antennenanschlüsse, d.h. Antennenelemente strahlen während der EMV-Prüfung nicht, erfüllen die HF-Anforderungen für Typ 2-O Repeater in TS 38.106[2] und weisen die Konformität mit TS 38.115-2[4] nach. NCRs, die mit Antennen oder TAB Anschlüssen ausgestattet sind, die während der EMV-Prüfung abgeschlossen werden können, erfüllen die HF-Anforderungen für NCR-Fwd/MT Typ 1-C und Typ 1-H in TS 38.106[2] und weisen die Konformität mit TS 38.115-1[3] nach. Der NCR ist nicht mit einem Antennenanschluss ausgestattet, was bedeutet, dass das Antennenelement während der EMV-Prüfung nicht bestrahlt wurde, was den HF-Anforderungen des Typs NCR-Fwd/MT 2-O in TS 38.106 [2] entspricht und seine Konformität durch die Einhaltung von TS38.115-2 [4] nachweist. Die Klassifizierung der Repeater-Umgebung bezieht sich auf die Klassifizierungen für Wohn-, Gewerbe- und Leichtindustrielle Umgebungen, die in IEC 61000-6-1 [6], IEC 61000-6-3 [7] und IEC 61000-6-8 [24] verwendet werden. Diese EMV-Anforderungen wurden gewählt, um sicherzustellen, dass die Geräte in Wohn-, Gewerbe- und Leichtindustriellen Umgebungen ausreichend kompatibel sind. Diese Pegel decken jedoch keine Extremsituationen ab, die an einem beliebigen Ort, aber mit geringer Wahrscheinlichkeit auftreten können.

2025

11/24

1 2 3 4 5 6 7 8 9 10